The Problem statement is copy pasted from LeetCode as it is:
Given n
non-negative integers a1, a2, ..., an
, where each represents a point at coordinate (i, ai)
. n
vertical lines are drawn such that the two endpoints of the line i
is at (i, ai)
and (i, 0)
. Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7] Output: 49 Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1] Output: 1
Example 3:
Input: height = [4,3,2,1,4] Output: 16
Example 4:
Input: height = [1,2,1] Output: 2
Constraints:
n == height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
My Solution
package madwani.sushil.leetcode.Amazon;
public class ContainerWithMostWater {
public static void main(String[] args) {
int[] nums = new int[] {1,8,6,2,5,4,8,3,7};
int[] nums1 = new int[] {1,1};
int[] nums2 = new int[] {4,3,2,1,4};
int[] nums3 = new int[] {1,2,1};
System.out.println(maxArea1(nums));
System.out.println(maxArea1(nums1));
System.out.println(maxArea1(nums2));
System.out.println(maxArea1(nums3));
System.out.println(maxArea(nums));
System.out.println(maxArea(nums1));
System.out.println(maxArea(nums2));
System.out.println(maxArea(nums3));
}
// time complexity is O(n^2)
public static int maxArea(int[] height) {
int area = 0;
for(int i = 0; i < height.length; i++) {
for (int j = i+1; j < height.length; j++) {
// try to find the maximum area
area = Math.max(area, (Math.min(height[i], height[j]))*(j-i));
}
}
return area;
}
// time complexity is O(n)
public static int maxArea1(int[] height) {
int area = 0, start_index = 0, end_index = height.length-1;
while (start_index <= end_index) {
area = Math.max(area, (Math.min(height[start_index], height[end_index]))*(end_index-start_index));
if (height[start_index] <= height[end_index]) {
start_index++;
} else{
end_index--;
}
}
return area;
}
}
No comments:
Post a Comment